Maternal Alloimmunization and HDFN:

An overview for providers

Welcome! The Allo Hope Foundation does not endorse any medical or professional service obtained through information provided on this site or any links to this site. While our web site content is frequently updated, medical information changes rapidly and therefore, some information may be out of date, and/or contain inaccuracies. When you are finished reading through our provider overview, be sure to check out the Resource Library for more detailed information about alloimmunization and HDFN.

Interventions for the Infant

Interventions for Hyperbilirubinemia

For additional articles relating to hyperbilirubinemia and treatment options, see our additional reading by topic page.

Phototherapy

Intervention for hyperbilirubinemia includes phototherapy based on cord bilirubin, serial determinations, and the rate of rise. A cord bilirubin of ⩾2.05 mg/dL (pre-term) to 2.15 mg/dL (full-term) indicates need for phototherapy 60. Serum bilirubin should be assessed regularly during phototherapy. It is important to note that infants with HDFN will have rebounding hyperbilirubinemia. When phototherapy is stopped, levels will increase rapidly and the infant will frequently require additional phototherapy. To help prevent this, it is better to use continuous phototherapy vs intermittent phototherapy. Because home phototherapy is not an option for infants with HDFN, a 12 or 24 hour trial without lights before discharge is advisable to reduce hospital readmissions.

Intravenous Immune Globulin (IVIG)

The implementation of intravenous immune globulin (IVIG) in the newborn is employed by many neonatal units in the treatment of HDFN after birth 46. IVIG is given when bilirubin levels are rising despite intensive phototherapy, or when levels are approaching the levels necessitating an exchange transfusion. Early studies indicated that high-dose IVIG (0.5g/kg IV immediately after HDFN is confirmed) does reduce serum bilirubin levels and subsequent need for exchange transfusion 47. A recent meta-analysis confirmed these findings in studies where IVIG doses ranged from 0.5g/kg to 1.5g/kg in one to three administrations 48. Adverse effects of IVIG can include: fever, allergic reactions, rebound hemolysis, and fluid overload 88. IVIG can affect the efficacy of some live-virus vaccines for 11-12 months. This can affect administration of the rotavirus vaccine.

Exchange Transfusion

Exchange transfusion should be conducted if bilirubin reaches or exceeds critical levels as shown below (infants with HDFN are medium or high risk)45. A cord bilirubin level of >5 mg/dL, or a rate of rise in serum bilirubin of more than 0.5-1 mg/dL/h is predictive of the ultimate need for exchange transfusion 84. IVIG may prevent the need for an exchange transfusion if initiated early enough.

Metalloporphyrins

While phototherapy and exchange transfusions are effective treatments for hyperbilirubinemia after it forms, much can be done to optimize treatment of infants with HDFN to prevent and eliminate the development of kernicterus. Studies are currently underway on a multitude of pharmacotherapeutic agents to prevent or treat neonatal hyperbilirubinemia, including metalloporphyrins. The increased hemolysis occuring in infants with HDFN is associated with increased bilirubin production and a greater risk for neurologic injury. Preventing the formation of bilirubin via heme oxygenase (the rate-limiting enzyme responsible for the production of bilirubin), is possible with both natural and synthetic metalloporphyrins 87. Clinical studies of SnMP show that it prevents excessive hyperbilirubinemia and reduces the duration and need for phototherapy in both term and near-term infants 86. The use of metalloporphyrins reduces the risk of Kernicterus and BIND, however side effects such as photosensitivity and potential inhibition of several other enzymes that have essential roles in metabolism have been known to occur 86. While multiple metalloporphyrins have been studied in animal models, only two have been studied in human neonates: tin protoporphyrin (SnPP) and tin mesoporphyrin (SnMP). SnPP was highly efficacious, but abandoned due to its photosensitizing properties85. SnMP can be used at lower doses with minimal photoreactivity 87. Metalloporphyrins are currently being studied and administered on a compassionate basis, particularly in regards to patients with religious objections to blood products 89.

Interventions for Anemia

“Top-up” Transfusions

Elevated levels of circulating maternal antibodies in the neonatal circulation in conjunction with suppression of the fetal bone marrow production of red cells often results in the need for neonatal red cell “top-up” transfusions after discharge from the nursery. This results in a 1- to 3-month period in which up to 75% of these infants may need “top-up” red cell transfusions 96. Weekly reticulocyte counts and hematocrit levels should be assessed until a rising reticulocyte count is noted for at least 2 consecutive weeks. The threshold-for-transfusion includes a hematocrit value of less than 30% in the symptomatic infant or less than 20% in the asymptomatic infant have been suggested by some experts. Typically, only one neonatal transfusion is required, although a maximum of up to three has been reported.

Erythropoietin

Erythropoietin has been in use since the 1990s as an adjunct treatment for late anemia and to increase a reduced reticulocyte count. In limited single-arm studies and case reports, erythropoietin has been shown to be safe 33, 38 and may reduce the need for transfusion in neonates with HDFN 46, 66, 68, 69, 70. In one 6-week study of 20 infants with HDFN due to anti-D, the “number of erythrocyte transfusions was significantly lower than that of the control group (1.8 versus 4.2). The reticulocyte counts and Hb levels rose earlier in the treatment group" 13. This may also be a treatment option for children whose parents object to the use of blood products for religious reasons 67. For additional articles relating to erythropoietin, see our additional reading by topic page.

Folic Acid

Active hemolysis consumes folate; folate is a key ingredient in erythropoiesis. As a result, folic acid is frequently prescribed for infants with HDFN in order to encourage the creation of new RBCs. Various approaches supplement folic acid at a dosage between 50 µg/day and 300µg/day for 3 months 56.

References

  1. 1. Branger B, Winer N. Epidémiologie de l allo-immunisation anti-D pendant la grossesse [Epidemiology of anti-D allo-immunization during pregnancy]. J Gynecol Obstet Biol Reprod (Paris). 2006;35(1 Suppl):1S87–1S92.
  2. 2. Sánchez-Durán MÁ, Higueras MT, Halajdian-Madrid C, et al. Management and outcome of pregnancies in women with red cell isoimmunization: a 15-year observational study from a tertiary care university hospital. BMC Pregnancy Childbirth. 2019;19(1):356. Published 2019 Oct 15. doi:10.1186/s12884-019-2525-y
  3. 3. ACOG Practice Bulletin No. 192: Management of Alloimmunization During Pregnancy. Obstet Gynecol. 2018;131(3):e82–e90. doi:10.1097/AOG.0000000000002528
  4. 4. HCP - Rhogam Full Prescribing Information. http://www.rhogam.com/hcp/hcp-home/ . Accessed April 17, 2020.
  5. 5. Moise Jr KJ. Overview of RhD alloimmunization in pregnancy. UpToDate. https://www.uptodate.com/contents/management-of-pregnancy-complicated-by-rhd-alloimmunization. Cited March 24, 2020.
  6. 6. Moise Jr KJ. Intrauterine Fetal Transfusion of Red Cells. UpToDate. https://www.uptodate.com/contents/intrauterine-fetal-transfusion-of-red-cells. Cited April 17, 2020
  7. 7. Abu-Rustum RS, Ziade MF, Ghosn I, Helou N. Normogram of Middle Cerebral Artery Doppler Indexes and Cerebroplacental Ratio at 12 to 14 Weeks in an Unselected Pregnancy Population. Am J Perinatol. 2019;36(2):155–160. doi:10.1055/s-0038-1661404
  8. 8. El Hameed AA. Vaginal versus intramuscular progesterone in the prevention of preterm labor and their effect on uterine and fetal blood flow. Middle East Fertility Society Journal. 2012 Sep 1;17(3):163-9. doi: 10.1016/j.mefs.2011.12.003
  9. 9. Urban R, Lemancewicz A, Przepieść J, Urban J, Kretowska M. Antenatal corticosteroid therapy: a comparative study of dexamethasone and betamethasone effects on fetal Doppler flow velocity waveforms. Eur J Obstet Gynecol Reprod Biol. 2005;120(2):170–174.
  10. 10. Mari, G. (2005), Middle cerebral artery peak systolic velocity for the diagnosis of fetal anemia: the untold story. Ultrasound Obstet Gynecol, 25: 323-330. doi:10.1002/uog.1882
  11. 11. Brennand J. Middle cerebral artery Doppler. Australas J Ultrasound Med. 2009;12(3):35–38. doi:10.1002/j.2205-0140.2009.tb00058.x
  12. 12. Opheim GL, Zucknick M, Henriksen T, Haugen G. A maternal meal affects clinical Doppler parameters in the fetal middle cerebral artery. PLoS One. 2018;13(12):e0209990. Published 2018 Dec 31. doi:10.1371/journal.pone.0209990
  13. 13. Ovali F, Samanci N, Dağoğlu T. Management of late anemia in Rhesus hemolytic disease: use of recombinant human erythropoietin (a pilot study). Pediatr Res. 1996;39(5):831–834. doi:10.1203/00006450-199605000-00015
  14. 14. Alloimmunization III - Management of Alloimmunized Pregnancy With At Risk Fetus. UNC Center for Maternal & Infant Health. Retrieved from https://www.mombaby.org/wp-content/uploads/2018/02/Alloimmunization-III_-Managment-of-Alloimmunized-Pregnancy-with-at-Risk-Fetus-2.pdf. Accessed 4/17/2020
  15. 15. Moise Jr KJ, Kennedy MS. Management of non-RhD Red Blood Cell Alloantibodies During Pregnancy. https://www.uptodate.com/contents/management-of-non-rhd-red-blood-cell-alloantibodies-during-pregnancy . Cited April 17, 2020
  16. 16. Zwiers C, Lindenburg ITM, Klumper FJ, de Haas M, Oepkes D, Van Kamp IL. Complications of intrauterine intravascular blood transfusion: lessons learned after 1678 procedures. Ultrasound Obstet Gynecol. 2017;50(2):180–186. doi:10.1002/uog.17319
  17. 17. Evers D, Middelburg RA, de Haas M, et al. Red-blood-cell alloimmunisation in relation to antigens' exposure and their immunogenicity: a cohort study. Lancet Haematol. 2016;3(6):e284–e292. doi:10.1016/S2352-3026(16)30019-9
  18. 18. Deka D, Dadhwal V, Sharma AK, et al. Perinatal survival and procedure-related complications after intrauterine transfusion for red cell alloimmunization. Arch Gynecol Obstet. 2016;293(5):967–973. doi:10.1007/s00404-015-3915-7
  19. 19. Sainio S, Nupponen I, Kuosmanen M, et al. Diagnosis and treatment of severe hemolytic disease of the fetus and newborn: a 10-year nationwide retrospective study. Acta Obstet Gynecol Scand. 2015;94(4):383–390. doi:10.1111/aogs.12590
  20. 20. Giannakoulopoulos X, Sepulveda W, Kourtis P, Glover V, Fisk NM. Fetal plasma cortisol and beta-endorphin response to intrauterine needling. Lancet. 1994;344(8915):77–81. doi:10.1016/s0140-6736(94)91279-3
  21. 21. Moise KJ Jr. Management of rhesus alloimmunization in pregnancy. Obstet Gynecol. 2008;112(1):164–176. doi:10.1097/AOG.0b013e31817d453c. 2002;100(3):600–611. doi:10.1016/s0029-7844(02)02180-4
  22. 22. Fisk NM, Gitau R, Teixeira JM, Giannakoulopoulos X, Cameron AD, Glover VA. Effect of direct fetal opioid analgesia on fetal hormonal and hemodynamic stress response to intrauterine needling. Anesthesiology. 2001;95(4):828–835. doi:10.1097/00000542-200110000-00008
  23. 23. de la Cámara C, Arrieta R, González A, Iglesias E, Omeñaca F. High-dose intravenous immunoglobulin as the sole prenatal treatment for severe Rh immunization. N Engl J Med. 1988;318(8):519–520. doi:10.1056/NEJM198802253180816
  24. 24. Chitkara U, Bussel J, Alvarez M, Lynch L, Meisel RL, Berkowitz RL. High-dose intravenous gamma globulin: does it have a role in the treatment of severe erythroblastosis fetalis?. Obstet Gynecol. 1990;76(4):703–708.
  25. 25. Marson P, Gervasi MT, Tison T, Colpo A, De Silvestro G. Therapeutic apheresis in pregnancy: General considerations and current practice. Transfus Apher Sci. 2015;53(3):256–261. doi:10.1016/j.transci.2015.11.004
  26. 26. Ruma MS, Moise KJ Jr, Kim E, et al. Combined plasmapheresis and intravenous immune globulin for the treatment of severe maternal red cell alloimmunization. Am J Obstet Gynecol. 2007;196(2):138.e1–138.e1386. doi:10.1016/j.ajog.2006.10.890
  27. 27. Trevett TN Jr, Dorman K, Lamvu G, Moise KJ Jr. Antenatal maternal administration of phenobarbital for the prevention of exchange transfusion in neonates with hemolytic disease of the fetus and newborn. Am J Obstet Gynecol. 2005;192(2):478–482. doi:10.1016/j.ajog.2004.08.016
  28. 28. Venkatnarayan K, Sankar MJ, Agarwal R, Paul VK, Deorari AK. Phenobarbitone in Rh hemolytic disease of the newborn: a randomized double-blinded placebo-controlled trial. J Trop Pediatr. 2013;59(5):380–386. doi:10.1093/tropej/fmt032
  29. 29. Giannina G, Moise KJ Jr, Dorman K. A simple method to estimate volume for fetal intravascular transfusions. Fetal Diagn Ther. 1998;13(2):94–97. doi:10.1159/000020813
  30. 30. Plecas DV, Chitkara U, Berkowitz GS, Lapinski RH, Alvarez M, Berkowitz RL. Intrauterine intravascular transfusion for severe erythroblastosis fetalis: how much to transfuse?. Obstet Gynecol. 1990;75(6):965–969.
  31. 31. van Kamp IL, Klumper FJ, Meerman RH, Oepkes D, Scherjon SA, Kanhai HH. Treatment of fetal anemia due to red-cell alloimmunization with intrauterine transfusions in the Netherlands, 1988-1999. Acta Obstet Gynecol Scand. 2004;83(8):731–737. doi:10.1111/j.0001-6349.2004.00394.x
  32. 32. Seeho SK, Burton G, Leigh D, Marshall JT, Persson JW, Morris JM. The role of preimplantation genetic diagnosis in the management of severe rhesus alloimmunization: first unaffected pregnancy: case report. Hum Reprod. 2005;20(3):697–701. doi:10.1093/humrep/deh624
  33. 33. Donato H, Bacciedoni V, García C, Schvartzman G, Vain N. Tratamiento de la anemia hiporregenerativa tardía de la enfermedad hemolítica del recién nacido con eritropoyetina recombinante [Recombinant erythropoietin as treatment for hyporegenerative anemia following hemolytic disease of the newborn]. Arch Argent Pediatr. 2009;107(2):119–125. doi:10.1590/S0325-00752009000200005
  34. 34. Zwiers C, van der Bom JG, van Kamp IL, et al. Postponing Early intrauterine Transfusion with Intravenous immunoglobulin Treatment; the PETIT study on severe hemolytic disease of the fetus and newborn. Am J Obstet Gynecol. 2018;219(3):291.e1–291.e9. doi:10.1016/j.ajog.2018.06.007
  35. 35. Piazze JJ, Anceschi MM, La Torre R, Amici F, Maranghi L, Cosmi EV. Effect of antenatal betamethasone therapy on maternal-fetal Doppler velocimetry. Early Hum Dev. 2001;60(3):225–232. doi:10.1016/s0378-3782(00)00120-1
  36. 36. Chitrit Y, Caubel P, Herrero R, Schwinte AL, Guillaumin D, Boulanger MC. Effects of maternal dexamethasone administration on fetal Doppler flow velocity waveforms. BJOG. 2000;107(4):501–507. doi:10.1111/j.1471-0528.2000.tb13269.x
  37. 37. Markham KB, Moise KJ Jr. 531: Anti-Rh(D) Alloimmunization: Outcomes at a single institution. Am J Obstet Gynecol 2017; 218:S318. DOI:10.1016/j.ajog.2017.11.058
  38. 38. Alvarez Domínguez E, Pérez Fernández JM, Figueras Aloy J, Carbonell Estrany X. Tratamiento con eritropoyetina para la anemia tardía tras enfermedad hemolítica del recién nacido [Erythropoietin treatment for late anaemia after haemolytic disease of the newborn]. An Pediatr (Barc). 2010;73(6):334–339. doi:10.1016/j.anpedi.2010.09.002
  39. 39. Tiblad E, Kublickas M, Ajne G, et al. Procedure-related complications and perinatal outcome after intrauterine transfusions in red cell alloimmunization in Stockholm. Fetal Diagn Ther. 2011;30(4):266–273. doi:10.1159/000328683
  40. 40. Pasman SA, Claes L, Lewi L, et al. Intrauterine transfusion for fetal anemia due to red blood cell alloimmunization: 14 years experience in Leuven. Facts Views Vis Obgyn. 2015;7(2):129–136.
  41. 41. Dodd JM, Andersen C, Dickinson JE, et al. Fetal middle cerebral artery Doppler to time intrauterine transfusion in red-cell alloimmunization: a randomized trial. Ultrasound Obstet Gynecol. 2018;51(3):306–312. doi:10.1002/uog.18807
  42. 42. Bondagji NS. Rhesus alloimmunization in pregnancy. A tertiary care center experience in the Western region of Saudi Arabia [published correction appears in Saudi Med J. 2012 Jun;33(6):688]. Saudi Med J. 2011;32(10):1039–1045.
  43. 43. Nardozza LM, Camano L, Moron AF, et al. Perinatal mortality in Rh alloimmunized patients. Eur J Obstet Gynecol Reprod Biol. 2007;132(2):159–162. doi:10.1016/j.ejogrb.2006.06.007
  44. 44. Delaney M, Matthews DC. Hemolytic disease of the fetus and newborn: managing the mother, fetus, and newborn. Hematology Am Soc Hematol Educ Program. 2015;2015:146–151. doi:10.1182/asheducation-2015.1.146
  45. 45. American Academy of Pediatrics Subcommittee on Hyperbilirubinemia. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation [published correction appears in Pediatrics. 2004 Oct;114(4):1138]. Pediatrics. 2004;114(1):297–316. doi:10.1542/peds.114.1.297
  46. 46. Rath ME, Smits-Wintjens VE, Walther FJ, Lopriore E. Hematological morbidity and management in neonates with hemolytic disease due to red cell alloimmunization. Early Hum Dev. 2011;87(9):583–588. doi:10.1016/j.earlhumdev.2011.07.010
  47. 47. Rübo J, Albrecht K, Lasch P, et al. High-dose intravenous immune globulin therapy for hyperbilirubinemia caused by Rh hemolytic disease. J Pediatr. 1992;121(1):93–97. doi:10.1016/s0022-3476(05)82551-x
  48. 48. Cortey A, Elzaabi M, Waegemans T, Roch B, Aujard Y. Efficacité et tolérance des immunoglobulines polyvalentes dans l'hyperbilirubinémie néonatale par incompatibilité ABO. Méta-analyse [Efficacy and safety of intravenous immunoglobulins in the management of neonatal hyperbilirubinemia due to ABO incompatibility: a meta-analysis]. Arch Pediatr. 2014;21(9):976–983. doi:10.1016/j.arcped.2014.02.005
  49. 49. Rath ME, Smits-Wintjens VE, Oepkes D, Walther FJ, Lopriore E. Iron status in infants with alloimmune haemolytic disease in the first three months of life. Vox Sang. 2013;105(4):328–333. doi:10.1111/vox.12061
  50. 50. Smits-Wintjens VE, Walther FJ, Lopriore E. Rhesus haemolytic disease of the newborn: Postnatal management, associated morbidity and long-term outcome. Semin Fetal Neonatal Med. 2008;13(4):265–271. doi:10.1016/j.siny.2008.02.005
  51. 51. Yilmaz S, Duman N, Ozer E, et al. A case of rhesus hemolytic disease with hemophagocytosis and severe iron overload due to multiple transfusions. J Pediatr Hematol Oncol. 2006;28(5):290–292. doi:10.1097/01.mph.0000212906.07018.93
  52. 52. Sreenan C, Idikio HA, Osiovich H. Successful chelation therapy in a case of neonatal iron overload following intravascular intrauterine transfusion. J Perinatol. 2000;20(8 Pt 1):509–512. doi:10.1038/sj.jp.7200458
  53. 53. Khdair-Ahmad F, Aladily T, Khdair-Ahmad O, Badran EF. Chelation therapy for secondary neonatal iron over load: Lessons learned from rhesus hemolytic disease. Turk J Pediatr. 2018;60(3):335–339. doi:10.24953/turkjped.2018.03.018
  54. 54. Yalaz M, Bilgin BS, Köroğlu OA, et al. Desferrioxamine treatment of iron overload secondary to RH isoimmunization and intrauterine transfusion in a newborn infant. Eur J Pediatr. 2011;170(11):1457–1460. doi:10.1007/s00431-011-1521-7
  55. 55. Demircioğlu F, Çağlayan Sözmen Ş, Yılmaz Ş, et al. Severe iron overload and hyporegenerative anemia in a case with rhesus hemolytic disease: therapeutic approach to rare complications. Rhesus hemolitik hastalıklı bir vakada hiporejeneratif anemi ve aşırı demir yüklenmesi: Nadir gelişen komplikasyona terapötik yaklaşım. Turk J Haematol. 2010;27(3):204–208. doi:10.5152/tjh.2010.30
  56. 56. Ree IMC, Smits-Wintjens VEHJ, van der Bom JG, van Klink JMM, Oepkes D, Lopriore E. Neonatal management and outcome in alloimmune hemolytic disease. Expert Rev Hematol. 2017;10(7):607–616. doi:10.1080/17474086.2017.1331124
  57. 57. Berger HM, Lindeman JH, van Zoeren-Grobben D, Houdkamp E, Schrijver J, Kanhai HH. Iron overload, free radical damage, and rhesus haemolytic disease. Lancet. 1990;335(8695):933–936. doi:10.1016/0140-6736(90)90997-j
  58. 58. Smits-Wintjens VE, Rath ME, Lindenburg IT, et al. Cholestasis in neonates with red cell alloimmune hemolytic disease: incidence, risk factors and outcome. Neonatology. 2012;101(4):306–310. doi:10.1159/000335333
  59. 59. Bertini G, Dani C, Fonda C, Zorzi C, Rubaltelli FF. Bronze baby syndrome and the risk of kernicterus. Acta Paediatr. 2005;94(7):968–971. doi:10.1111/j.1651-2227.2005.tb02020.x
  60. 60. AlaaEldin A. Zeitoun, Hala F. Elhagrasy, Doaa M. Abdelsatar. Predictive value of umbilical cord blood bilirubin in neonatal hyperbilirubinemia. Egyptian Pediatric Association Gazette. 2013; 61 (1):23-30 https://doi.org/10.1016/j.epag.2013.04.006.
  61. 61. Rahimi-Sharbaf F, Shariat M, Mirzaie F, Dehghan P, Dastgardy E, Adabi K. Prediction of fetal anemia by different thresholds of MCA-PSV and Delta-OD in first and second intrauterine transfusions. Arch Iran Med. 2012;15(3):162–165.
  62. 62. Scheier M, Hernandez-Andrade E, Fonseca EB, Nicolaides KH. Prediction of severe fetal anemia in red blood cell alloimmunization after previous intrauterine transfusions. Am J Obstet Gynecol. 2006;195(6):1550–1556. doi:10.1016/j.ajog.2006.03.060
  63. 63. Delle Chiaie L, Buck G, Grab D, Terinde R. Prediction of fetal anemia with Doppler measurement of the middle cerebral artery peak systolic velocity in pregnancies complicated by maternal blood group alloimmunization or parvovirus B19 infection. Ultrasound Obstet Gynecol. 2001;18(3):232–236. doi:10.1046/j.0960-7692.2001.00540.x
  64. 64. Mari G, Zimmermann R, Moise KJ Jr, Deter RL. Correlation between middle cerebral artery peak systolic velocity and fetal hemoglobin after 2 previous intrauterine transfusions. Am J Obstet Gynecol. 2005;193(3 Pt 2):1117–1120. doi:10.1016/j.ajog.2005.06.078
  65. 65. Carbonne B, Friszer S, Mace G, Castaigne-Meary V, Cynober E, Mailloux A, Cortey A. Value of MCA-PSV and of expected daily decrease in fetal hemoglobin for the timing of serial in utero transfusions in red-cell alloimmunization. http://www.cnrhp.fr/PosterSMFM2011.pdf Accessed 4/17/2020
  66. 66. Manoura A, Korakaki E, Hatzidaki E, et al. Use of recombinant erythropoietin for the management of severe hemolytic disease of the newborn of a K0 phenotype mother. Pediatr Hematol Oncol. 2007;24(1):69–73. doi:10.1080/08880010601001453
  67. 67. Lakatos L, Csáthy L, Nemes E. "Bloodless" treatment of a Jehovah's Witness infant with ABO hemolytic disease. J Perinatol. 1999;19(7):530–532. doi:10.1038/sj.jp.7200223
  68. 68. Zuppa AA, Cardiello V, Alighieri G, et al. Anti-Rh(c), "little c," isoimmunization: the role of rHuEpo in preventing late anemia. J Pediatr Hematol Oncol. 2013;35(6):e269–e271. doi:10.1097/MPH.0b013e318271f5b0
  69. 69. Alaqeel AA. Hyporegenerative anemia and other complications of rhesus hemolytic disease: to treat or not to treat is the question. Pan Afr Med J. 2019;32:120. Published 2019 Mar 14. doi:10.11604/pamj.2019.32.120.17757
  70. 70. Dhodapkar KM, Blei F. Treatment of hemolytic disease of the newborn caused by anti-Kell antibody with recombinant erythropoietin. J Pediatr Hematol Oncol. 2001;23(1):69–70. doi:10.1097/00043426-200101000-00018
  71. 71. Moise KJ Jr, Argoti PS. Management and prevention of red cell alloimmunization in pregnancy: a systematic review. Obstet Gynecol. 2012;120(5):1132–1139. doi:10.1097/aog.0b013e31826d7dc1
  72. 72. Ghesquière L, Garabedian C, Coulon C, et al. Management of red blood cell alloimmunization in pregnancy. J Gynecol Obstet Hum Reprod. 2018;47(5):197–204. doi:10.1016/j.jogoh.2018.02.001
  73. 73. Simpson KR. Obstetrical "never events". MCN Am J Matern Child Nurs. 2006;31(2):136. doi:10.1097/00005721-200603000-00022
  74. 74. Parents of Infants and Children with Kernicterus, PICK
  75. 75. Bilirubin-encephalopathy. Icahn School of Medicine at Mount Sinai
  76. 76. Cholestasis in a neonate with ABO haemolytic disease of newborn following transfusion of ABO group-specific red cells compatible with neonatal serum: inspissated bile syndrome. Blood Transfus. 2014;12(4):621‐623. doi:10.2450/2014.0099-14
  77. 77. Macher S, Wagner T, Rosskopf K, et al. Severe case of fetal hemolytic disease caused by anti-C(w) requiring serial intrauterine transfusions complicated by pancytopenia and cholestasis. Transfusion. 2016;56(1):80‐83. doi:10.1111/trf.13367
  78. 78. Koenig JM, Christensen RD. Neutropenia and thrombocytopenia in infants with Rh hemolytic disease. J Pediatr. 1989;114(4 Pt 1):625‐631. doi:10.1016/s0022-3476(89)80709-7
  79. 79. Segal N, Leibovitz E, Juster-Reicher A, Even-Tov S, Mogilner B, Barak Y. Neutropenia complicating Rh-hydrops fetalis: the effect of treatment with recombinant human granulocyte colony-stimulating factor (rhG-CSF). Pediatr Hematol Oncol. 1998;15(2):193‐197. doi:10.3109/08880019809167235
  80. 80. Blanco E, Johnston DL. Neutropenia in infants with hemolytic disease of the newborn. Pediatr Blood Cancer. 2012;58(6):950‐952. doi:10.1002/pbc.23233
  81. 81. van den Akker ES, de Haan TR, Lopriore E, Brand A, Kanhai HH, Oepkes D. Severe fetal thrombocytopenia in Rhesus D alloimmunized pregnancies. Am J Obstet Gynecol. 2008;199(4):387.e1‐387.e3874. doi:10.1016/j.ajog.2008.07.001
  82. 82. Rath ME, Smits-Wintjens VE, Oepkes D, et al. Thrombocytopenia at birth in neonates with red cell alloimmune haemolytic disease. Vox Sang. 2012;102(3):228‐233. doi:10.1111/j.1423-0410.2011.01539.x
  83. 83. Zwiers C, van Kamp I, Oepkes D, & Lopriore E. Intrauterine transfusion and non-invasive treatment options for hemolytic disease of the fetus and newborn – review on current management and outcome, Expert Review of Hematology. 10:4,337-344, DOI: 10.1080/17474086.2017.1305265
  84. 84. Springer, Shelly C. Kernicterus treatment and management. Medscape.
  85. 85. Thilo, Elizabeth. Hemolytic Disease of the Newborn. Cancer Therapy Advisor; Pediatrics.
  86. 86. Wong R, Bhutani V, Vreman H, Stevenson D. Pharmacology Review: Tin Mesoporphyrin for the Prevention of Severe Neonatal Hyperbilirubinemia. NeoReviews. February 2007, 8 (2) e77-e84; DOI: https://doi.org/10.1542/neo.8-2-e77
  87. 87. Stevenson DK, Wong RJ. Metalloporphyrins in the management of neonatal hyperbilirubinemia. Semin Fetal Neonatal Med. 2010;15(3):164‐168. doi:10.1016/j.siny.2009.11.004
  88. 88. Schulz S, Wong RJ, Vreman HJ, Stevenson DK. Metalloporphyrins - an update. Front Pharmacol. 2012;3:68. Published 2012 Apr 26. doi:10.3389/fphar.2012.00068
  89. 89. Kappas A, Drummond GS, Munson DP, Marshall JR. Sn-Mesoporphyrin interdiction of severe hyperbilirubinemia in Jehovah's Witness newborns as an alternative to exchange transfusion. Pediatrics. 2001;108(6):1374‐1377. doi:10.1542/peds.108.6.1374
  90. 90. Lindenburg IT, Smits-Wintjens VE, van Klink JM, et al. Long-term neurodevelopmental outcome after intrauterine transfusion for hemolytic disease of the fetus/newborn: the LOTUS study. Am J Obstet Gynecol. 2012;206(2):141.e1‐141.e1418. doi:10.1016/j.ajog.2011.09.024
  91. 91. Doyle L W, Kelly E A, Rickards A L, Ford G W, Callanan C. Sensorineural outcome at 2 years for survivors of erythroblastosis treated with fetal intravascular transfusions. Obstet Gynecol. 1993; 81: 931-935.
  92. 92. Harper D C, Swingle H M, Weiner C P, Bonthius D J, Aylward G P, Widness J A. Long-term neurodevel-opmental outcome and brain volume after treatment for hydrops fetalis by in utero intravascular transfusion. Am J Obstet Gynecol. 2006; 195: 192-200.
  93. 93. Grab D, Paulus W E, Bommer A, Buck G, Terinde R. Treatment of fetal erythroblastosis by intravascular transfusions: outcome at 6 years. Obstet Gynecol. 1999; 93: 165-168.
  94. 94. Hudon L, Moise K J, Jr., Hegemier S E et al. Long-term neurodevelopmental outcome after intrauterine transfusion for the treatment of fetal hemolytic disease. Am J Obstet Gynecol. 1998; 179:
  95. 95. Davies NP, Buggins AG, Snijders RJ, Noble PN, Layton DM, Nicolaides KH. Fetal leucocyte count in rhesus disease. Arch Dis Child. 1992;67(4 Spec No):404‐406. doi:10.1136/adc.67.4_spec_no.404
  96. 96.Saade GR, Moise KJ, Belfort MA, Hesketh DE, Carpenter RJ. Fetal and neonatal hematologic parameters in red cell alloimmunization: predicting the need for late neonatal transfusions. Fetal Diagn Ther. 1993;8:161-4.
  97. 97. Yinon Y, Visser J, Kelly EN, et al. Early intrauterine transfusion in severe red blood cell alloimmunization. Ultrasound Obstet Gynecol. 2010;36(5):601-606. doi:10.1002/uog.7696
  98. 98. Lindenburg IT, Wolterbeek R, Oepkes D, Klumper FJ, Vandenbussche FP, van Kamp IL. Quality control for intravascular intrauterine transfusion using cumulative sum (CUSUM) analysis for the monitoring of individual performance. Fetal Diagn Ther. 2011;29(4):307-314. doi:10.1159/000322919

We Are Here To Help.

Let us know what you need as a member of the alloimmunized community. Do you need additional resources or information? Would you like copies of our point of care materials and patient-facing handouts? Contact us and let us know how we can serve you.

  • We Are Here To Help.

    We want to connect you with the latest alloimmunization & HDFN information. Let us know what you need as a member of the alloimmunized community. Do you need additional resources or information? Would you like copies of our point of care materials and patient handouts? Email us and let us know how we can serve you. You can also join our quarterly newsletter to stay informed on current developments in the alloimmunization & HDFN world.

  • Which quarterly newsletter would you be interested in joining?