Maternal Alloimmunization and HDFN:

An overview for providers

Welcome! The Allo Hope Foundation does not endorse any medical or professional service obtained through information provided on this site or any links to this site. While our web site content is frequently updated, medical information changes rapidly and therefore, some information may be out of date, and/or contain inaccuracies. When you are finished reading through our provider overview, be sure to check out the Resource Library for more detailed information about alloimmunization and HDFN.

Neonatal Presentation of HDFN

The risks of HDFN do not end at delivery. Monitoring and management must be just as vigilant after birth as during pregnancy in order to prevent neonatal harm and infant death. Maternal alloantibodies which have crossed the placenta remain in the infant’s circulation and can attach to the infant’s red blood cells for up to 12 weeks after birth. For this reason, follow-up in newborns whose cord blood confirms the presence of maternal antibodies is essential for several weeks after discharge from the hospital, even in the absence of visible indications of anemia.

Infants with either a positive DAT or who are antigen positive in the case of a DAT exception antibody, and who have signs of anemia, hyperbilirubinemia, or some other consequence of HDFN are considered to be affected by HDFN. It is not required that an infant be treated (via transfusion etc) in order for them to be considered affected and diagnosed with HDFN. Affected infants must be monitored for ongoing and delayed anemia and other signs of HDFN. This poses a unique challenge when consistent, quality care must continue across multiple providers including maternal-fetal medicine specialists, neonatologists, hematologists and pediatricians. Unfortunately many infants do not receive proper monitoring and follow up care for HDFN and preventable infant deaths are still occurring today.

HDFN can manifest itself in a variety of ways, including: hyperbilirubinemia, neutropenia, thrombocytopenia, anemia, and more.


The destruction of red blood cells causes the release of bilirubin. In utero the bilirubin is filtered via the placenta; after birth the neonatal liver assumes the role of removing bilirubin. Due to the neonatal liver’s immature metabolic pathways 44, high levels of bilirubin can rapidly build up in the neonate’s system causing jaundice which can lead to permanent effects such as: bilirubin encephalopathy, kernicterus, cholestasis, and death if not treated properly. A total serum bilirubin level at or above the exchange transfusion level should be considered a medical emergency and intensive phototherapy, IVIG, and preparation for an exchange transfusion should be commenced immediately. Elevated levels of bilirubin have been associated with hearing loss in the neonate. Therefore, newborn screening for hearing loss (standard of care in most states) would appear warranted in children with HDFN. Follow-up screening at 1 and 2 years of age should be considered. Hyperbilirubinemia due to other causes typically peaks during days 1-3 of life, while hyperbilirubinemia due to HDFN tends to peak on days 4-6. Documents like the American Academy of Pediatrics’ Management of Hyperbilirubinemia in the Newborn Infant 35 or More Weeks of Gestation exist to help prevent and reduce the complications of hyperbilirubinemia. These guidelines should be followed closely to prevent neonatal harm. Tools such as Peditools provide clinical tools to assist the provider in the management of hyperbilirubinemia. Infants with HDFN should be considered to have “risk factors” when assessing bilirubin levels using standard phototherapy eligibility guidelines 45. Treatment options for hyperbilirubinemia are discussed in depth on the Infant interventions page and include: phototherapy, IVIG, exchange transfusion, and some clinical trials with tin mesoporphyrin. Phototherapy treatment may result in the development of Bronze Baby Syndrome in infants with elevated direct bilirubin levels. Bronze Baby Syndrome may increase the risk of complications due to hyperbilirubinemia such as Kernicterus 59. For additional articles relating to the consequences of hyperbilirubinemia listed below, see our additional reading by topic page.

Bilirubin encephalopathy

Infants with HDFN are at higher risk for developing bilirubin encephalopathy. Bilirubin encephalopathy develops when bilirubin moves from the bloodstream into the brain and refers to the acute manifestations of bilirubin toxicity in the first weeks after birth 45. This condition commonly develops during the first week of life, but can occur as late as the third week 75. Signs of bilirubin encephalopathy include: extreme jaundice, an absent startle reflex, poor feeding or sucking, lethargy, hypotonia, a high-pitched cry, irritability, and a hyperextended back and neck 75. Complications of bilirubin encephalopathy include: nerve deafness, damage to the tooth enamel (enamel dysplasia, and discoloration of the teeth), and brain damage.


While bilirubin encephalopathy refers to the acute manifestation of bilirubin toxicity, kernicterus is the chronic and permanent clinical sequelae of bilirubin toxicity 45. Kernicterus is NOT associated with any degree of cognitive impairment (mental disability), however survivors are often left trapped in a body that does not function as it should. This disease, listed as one of 27 medical errors that should never happen 73, continues to occur despite being completely preventable. Kernicterus is a spectrum which can include some or all of the following: movement disorders (athetoid cerebral palsy, dystonia, myoclonus that impairs the ability to sleep, vestibular instability), seizures, visual impairments (gaze abnormalities, nystagmus, strabismus, cortical visual impairment), digestive impairment (GERD, reflux, impaired digestion, impaired ability to swallow or eat orally), dental (dental enamel dysplasia or hypoplasia), and hearing impairment (including auditory neuropathy spectrum disorder) 74. Individuals living with kernicterus are affected to varying degrees. Some live with mild hearing loss, behavioral challenges, and/or clumsiness while other might be mistaken for someone with spastic quadriplegia.


Cholestasis occurs in up to 13% of infants with HDFN 58. Cholestasis can be identified with an elevated direct or conjugated bilirubin level. If the direct or conjugated bilirubin is elevated, additional evaluation for the cause of cholestasis is recommended 45. When other causes of cholestasis have been ruled out in a DAT positive infant, HDFN as a cause of cholestasis should be strongly considered. This can be due to iron overload from intrauterine transfusions 58, though in rare cases, cholestasis can result from inappropriate iron administration 56. While cholestasis is most commonly seen with HDFN due to anti-D 58, it can happen with HDFN due to other alloantibodies as well 76, 77.

Bronze Baby Syndrome

This is a rare complication that occurs in infants with cholestatic jaundice where they develop dark, grayish-brown discolored skin, blood, and urine. Infants who have received phototherapy with an elevated direct-reacting or conjugated bilirubin level may develop the bronze-baby syndrome 45, 59. Bronze baby syndrome has few consequences, but it can be disturbing to parents. Phototherapy is not contraindicated in infants with bronze baby syndrome, however providers should be aware that cholestasis will decrease the efficacy of phototherapy 45. For this reason, exchange transfusion may be considered at lower levels if intensive phototherapy is not working and the total serum bilirubin (TSB) is high or rising despite phototherapy 45. It is important that the direct serum bilirubin should not be subtracted from the TSB when making decisions about exchange transfusions 45. For additional articles relating to bronze baby syndrome, see our additional reading by topic page.


Neutropenia as a result of maternal alloimmunization has been documented since 1960 and still occurs in 45% of infants with HDFN 80 today. Koenig et al notes that, “the marked increase in erythropoiesis in fetuses with Rh hemolytic disease can be accompanied by a down-modulation of neutrophil and platelet production” 78. While all hydropic infants in Koenig’s paper were neutropenic, hydrops is not a requirement for neutropenia - even mildly affected infants with HDFN can be neutropenic. Neutropenic infants are at higher risk for infection and may require treatment for neutropenia; Recombinant Human Granulocyte Colony-Stimulating Factor has been used in some cases 79. Providers should make parents aware of the increased risk and encourage them to take precautions with their children. Neutropenia due to HDFN can persist for a year in some cases. In addition to neutropenia, leukopenia has also been known to occur 95. For additional articles relating to neutropenia, see our additional reading by topic page.


Thrombocytopenia is another lesser-known complication of HDFN, affecting 26% of fetuses 81 and infants 82. Risk factors include IUTs, small for gestational age, and lower gestational age at birth. Hydropic infants are more likely to be thrombocytopenic, though thrombocytopenia occurs in non-hydropic infants as well. Infants with thrombocytopenia experience bruising and bleeding easier than other infants. In severe cases, platelet transfusions are utilized. “Thrombocytopenia is an independent risk factor for perinatal mortality. Mortality in fetuses that were severely thrombocytopenic and severely hydropic was 67%.” 81For additional articles relating to thrombocytopenia, see our additional reading by topic page.


Maternal alloantibodies which have crossed into the fetal circulation remain and can attach to the infant’s red blood cells for up to 12 weeks after birth. For this reason, follow-up in newborns whose cord blood confirms the presence of maternal antibodies is essential until hemoglobin is increasing without a blood transfusion for at least two consecutive weeks, even in the absence of visible indications of anemia. Depending on the specific antibody and it’s reactions, anemia due to HDFN can manifest itself in one of three ways: early onset anemia, delayed onset anemia, and hyporegenerative anemia. No matter which form of anemia presents, iron is not an acceptable treatment for an infant with HDFN. Improperly monitored and untreated anemia can lead to heart failure and death in infants who are several weeks old. For additional articles relating to all of these types of anemia, see our additional reading by topic page.

Early onset anemia

Early onset anemia is anemia that is present at birth or before week 2. This anemia, caused by antibody mediated hemolysis, may be detected during a cord blood sample, or as part of other follow up testing. Infants who are in the NICU may struggle with feeding, failure to thrive, or cardiovascular complications. For these infants it is often not a matter of if they will need a transfusion, but when. Correcting the anemia early (at higher hemoglobin levels) may reduce stress on the infant’s body, reduce prematurity issues, and help improve latch for oral feeds. Infants with early onset anemia will have an elevated bilirubin, and a normal or elevated reticulocyte count 44. It is important to note that while early onset anemia occurs within the first 2 weeks of life, it does not resolve within the first two weeks of life. Early onset anemia can become hyporegenerative anemia and all infants with early onset anemia must be monitored weekly until the hemoglobin is increasing without intervention for 2-3 weeks in a row.

Delayed onset anemia

Delayed onset anemia is anemia that presents between 2-12 weeks of life. This anemia is still caused by antibody mediated hemolysis and may be worsened by a natural decline of hemoglobin levels. It is not uncommon for infants to need their first transfusion at 2-4 weeks of age. Infants with delayed onset anemia may have a normal or elevated bilirubin count, along with a normal or high reticulocyte count 44. Delayed onset anemia can happen to all infants with HDFN regardless of which antibody the mother has, even if the fetus was not treated with IUTs. Treatment options for infants with delayed onset anemia include folic acid, blood transfusion, and erythropoietin 13, 38.

Hyporegenerative anemia

Hyporegenerative anemia is a unique form of anemia due to HDFN that happens due to a combination of factors. Antibody mediated hemolysis is still in play, however bone marrow suppression either by IUTs and transfusions, or by specific antibody action is a major factor. Antibodies such as anti-Kell and anti-M are known to cause bone marrow suppression making it harder for the infant to regenerate blood cells destroyed by maternal antibodies. These infants usually have a normal bilirubin level along with a low reticulocyte count, and may also have erythropoietin deficiency 83. Hyporegenerative anemia is treated via erythropoietin to increase reticulocyte count 33, 69, 70.


A special consideration in these infants is the use of iron in HDFN. Infants with HDFN do not suffer from iron-deficiency anemia 49. A 2013 paper 49 found that ferritin levels are highly elevated at birth in neonates with HDFN. “Iron overload occurred in 70% of neonates at birth and in 50% and 18% at the age of 1 and 3 months, respectively.” 49 Do not administer iron supplements without first confirming the ferritin level 49, 50, 51. Inappropriate administration of iron in infants with HDFN can result in iron overload 46 and adverse events such as cholestasis 56, portal hypertension, coagulopathy abnormal liver enzymes, free-radical damage 57, liver damage, or death. For infants with severe iron overload, chelation therapy with desferrioxamine is an option to prevent or reduce organ damage 51, 52, 53, 54. Folic acid can be safely given to neonates with HDFN 46. If hyporegenerative anemia is a concern, Erythropoietin can be used either alone or in combination with desferrioxamine if iron overload is a concern 55. For additional articles relating to iron, see our additional reading by topic page.


  1. 1. Branger B, Winer N. Epidémiologie de l allo-immunisation anti-D pendant la grossesse [Epidemiology of anti-D allo-immunization during pregnancy]. J Gynecol Obstet Biol Reprod (Paris). 2006;35(1 Suppl):1S87–1S92.
  2. 2. Sánchez-Durán MÁ, Higueras MT, Halajdian-Madrid C, et al. Management and outcome of pregnancies in women with red cell isoimmunization: a 15-year observational study from a tertiary care university hospital. BMC Pregnancy Childbirth. 2019;19(1):356. Published 2019 Oct 15. doi:10.1186/s12884-019-2525-y
  3. 3. ACOG Practice Bulletin No. 192: Management of Alloimmunization During Pregnancy. Obstet Gynecol. 2018;131(3):e82–e90. doi:10.1097/AOG.0000000000002528
  4. 4. HCP - Rhogam Full Prescribing Information. . Accessed April 17, 2020.
  5. 5. Moise Jr KJ. Overview of RhD alloimmunization in pregnancy. UpToDate. Cited March 24, 2020.
  6. 6. Moise Jr KJ. Intrauterine Fetal Transfusion of Red Cells. UpToDate. Cited April 17, 2020
  7. 7. Abu-Rustum RS, Ziade MF, Ghosn I, Helou N. Normogram of Middle Cerebral Artery Doppler Indexes and Cerebroplacental Ratio at 12 to 14 Weeks in an Unselected Pregnancy Population. Am J Perinatol. 2019;36(2):155–160. doi:10.1055/s-0038-1661404
  8. 8. El Hameed AA. Vaginal versus intramuscular progesterone in the prevention of preterm labor and their effect on uterine and fetal blood flow. Middle East Fertility Society Journal. 2012 Sep 1;17(3):163-9. doi: 10.1016/j.mefs.2011.12.003
  9. 9. Urban R, Lemancewicz A, Przepieść J, Urban J, Kretowska M. Antenatal corticosteroid therapy: a comparative study of dexamethasone and betamethasone effects on fetal Doppler flow velocity waveforms. Eur J Obstet Gynecol Reprod Biol. 2005;120(2):170–174.
  10. 10. Mari, G. (2005), Middle cerebral artery peak systolic velocity for the diagnosis of fetal anemia: the untold story. Ultrasound Obstet Gynecol, 25: 323-330. doi:10.1002/uog.1882
  11. 11. Brennand J. Middle cerebral artery Doppler. Australas J Ultrasound Med. 2009;12(3):35–38. doi:10.1002/j.2205-0140.2009.tb00058.x
  12. 12. Opheim GL, Zucknick M, Henriksen T, Haugen G. A maternal meal affects clinical Doppler parameters in the fetal middle cerebral artery. PLoS One. 2018;13(12):e0209990. Published 2018 Dec 31. doi:10.1371/journal.pone.0209990
  13. 13. Ovali F, Samanci N, Dağoğlu T. Management of late anemia in Rhesus hemolytic disease: use of recombinant human erythropoietin (a pilot study). Pediatr Res. 1996;39(5):831–834. doi:10.1203/00006450-199605000-00015
  14. 14. Alloimmunization III - Management of Alloimmunized Pregnancy With At Risk Fetus. UNC Center for Maternal & Infant Health. Retrieved from Accessed 4/17/2020
  15. 15. Moise Jr KJ, Kennedy MS. Management of non-RhD Red Blood Cell Alloantibodies During Pregnancy. . Cited April 17, 2020
  16. 16. Zwiers C, Lindenburg ITM, Klumper FJ, de Haas M, Oepkes D, Van Kamp IL. Complications of intrauterine intravascular blood transfusion: lessons learned after 1678 procedures. Ultrasound Obstet Gynecol. 2017;50(2):180–186. doi:10.1002/uog.17319
  17. 17. Evers D, Middelburg RA, de Haas M, et al. Red-blood-cell alloimmunisation in relation to antigens' exposure and their immunogenicity: a cohort study. Lancet Haematol. 2016;3(6):e284–e292. doi:10.1016/S2352-3026(16)30019-9
  18. 18. Deka D, Dadhwal V, Sharma AK, et al. Perinatal survival and procedure-related complications after intrauterine transfusion for red cell alloimmunization. Arch Gynecol Obstet. 2016;293(5):967–973. doi:10.1007/s00404-015-3915-7
  19. 19. Sainio S, Nupponen I, Kuosmanen M, et al. Diagnosis and treatment of severe hemolytic disease of the fetus and newborn: a 10-year nationwide retrospective study. Acta Obstet Gynecol Scand. 2015;94(4):383–390. doi:10.1111/aogs.12590
  20. 20. Giannakoulopoulos X, Sepulveda W, Kourtis P, Glover V, Fisk NM. Fetal plasma cortisol and beta-endorphin response to intrauterine needling. Lancet. 1994;344(8915):77–81. doi:10.1016/s0140-6736(94)91279-3
  21. 21. Moise KJ Jr. Management of rhesus alloimmunization in pregnancy. Obstet Gynecol. 2008;112(1):164–176. doi:10.1097/AOG.0b013e31817d453c. 2002;100(3):600–611. doi:10.1016/s0029-7844(02)02180-4
  22. 22. Fisk NM, Gitau R, Teixeira JM, Giannakoulopoulos X, Cameron AD, Glover VA. Effect of direct fetal opioid analgesia on fetal hormonal and hemodynamic stress response to intrauterine needling. Anesthesiology. 2001;95(4):828–835. doi:10.1097/00000542-200110000-00008
  23. 23. de la Cámara C, Arrieta R, González A, Iglesias E, Omeñaca F. High-dose intravenous immunoglobulin as the sole prenatal treatment for severe Rh immunization. N Engl J Med. 1988;318(8):519–520. doi:10.1056/NEJM198802253180816
  24. 24. Chitkara U, Bussel J, Alvarez M, Lynch L, Meisel RL, Berkowitz RL. High-dose intravenous gamma globulin: does it have a role in the treatment of severe erythroblastosis fetalis?. Obstet Gynecol. 1990;76(4):703–708.
  25. 25. Marson P, Gervasi MT, Tison T, Colpo A, De Silvestro G. Therapeutic apheresis in pregnancy: General considerations and current practice. Transfus Apher Sci. 2015;53(3):256–261. doi:10.1016/j.transci.2015.11.004
  26. 26. Ruma MS, Moise KJ Jr, Kim E, et al. Combined plasmapheresis and intravenous immune globulin for the treatment of severe maternal red cell alloimmunization. Am J Obstet Gynecol. 2007;196(2):138.e1–138.e1386. doi:10.1016/j.ajog.2006.10.890
  27. 27. Trevett TN Jr, Dorman K, Lamvu G, Moise KJ Jr. Antenatal maternal administration of phenobarbital for the prevention of exchange transfusion in neonates with hemolytic disease of the fetus and newborn. Am J Obstet Gynecol. 2005;192(2):478–482. doi:10.1016/j.ajog.2004.08.016
  28. 28. Venkatnarayan K, Sankar MJ, Agarwal R, Paul VK, Deorari AK. Phenobarbitone in Rh hemolytic disease of the newborn: a randomized double-blinded placebo-controlled trial. J Trop Pediatr. 2013;59(5):380–386. doi:10.1093/tropej/fmt032
  29. 29. Giannina G, Moise KJ Jr, Dorman K. A simple method to estimate volume for fetal intravascular transfusions. Fetal Diagn Ther. 1998;13(2):94–97. doi:10.1159/000020813
  30. 30. Plecas DV, Chitkara U, Berkowitz GS, Lapinski RH, Alvarez M, Berkowitz RL. Intrauterine intravascular transfusion for severe erythroblastosis fetalis: how much to transfuse?. Obstet Gynecol. 1990;75(6):965–969.
  31. 31. van Kamp IL, Klumper FJ, Meerman RH, Oepkes D, Scherjon SA, Kanhai HH. Treatment of fetal anemia due to red-cell alloimmunization with intrauterine transfusions in the Netherlands, 1988-1999. Acta Obstet Gynecol Scand. 2004;83(8):731–737. doi:10.1111/j.0001-6349.2004.00394.x
  32. 32. Seeho SK, Burton G, Leigh D, Marshall JT, Persson JW, Morris JM. The role of preimplantation genetic diagnosis in the management of severe rhesus alloimmunization: first unaffected pregnancy: case report. Hum Reprod. 2005;20(3):697–701. doi:10.1093/humrep/deh624
  33. 33. Donato H, Bacciedoni V, García C, Schvartzman G, Vain N. Tratamiento de la anemia hiporregenerativa tardía de la enfermedad hemolítica del recién nacido con eritropoyetina recombinante [Recombinant erythropoietin as treatment for hyporegenerative anemia following hemolytic disease of the newborn]. Arch Argent Pediatr. 2009;107(2):119–125. doi:10.1590/S0325-00752009000200005
  34. 34. Zwiers C, van der Bom JG, van Kamp IL, et al. Postponing Early intrauterine Transfusion with Intravenous immunoglobulin Treatment; the PETIT study on severe hemolytic disease of the fetus and newborn. Am J Obstet Gynecol. 2018;219(3):291.e1–291.e9. doi:10.1016/j.ajog.2018.06.007
  35. 35. Piazze JJ, Anceschi MM, La Torre R, Amici F, Maranghi L, Cosmi EV. Effect of antenatal betamethasone therapy on maternal-fetal Doppler velocimetry. Early Hum Dev. 2001;60(3):225–232. doi:10.1016/s0378-3782(00)00120-1
  36. 36. Chitrit Y, Caubel P, Herrero R, Schwinte AL, Guillaumin D, Boulanger MC. Effects of maternal dexamethasone administration on fetal Doppler flow velocity waveforms. BJOG. 2000;107(4):501–507. doi:10.1111/j.1471-0528.2000.tb13269.x
  37. 37. Markham KB, Moise KJ Jr. 531: Anti-Rh(D) Alloimmunization: Outcomes at a single institution. Am J Obstet Gynecol 2017; 218:S318. DOI:10.1016/j.ajog.2017.11.058
  38. 38. Alvarez Domínguez E, Pérez Fernández JM, Figueras Aloy J, Carbonell Estrany X. Tratamiento con eritropoyetina para la anemia tardía tras enfermedad hemolítica del recién nacido [Erythropoietin treatment for late anaemia after haemolytic disease of the newborn]. An Pediatr (Barc). 2010;73(6):334–339. doi:10.1016/j.anpedi.2010.09.002
  39. 39. Tiblad E, Kublickas M, Ajne G, et al. Procedure-related complications and perinatal outcome after intrauterine transfusions in red cell alloimmunization in Stockholm. Fetal Diagn Ther. 2011;30(4):266–273. doi:10.1159/000328683
  40. 40. Pasman SA, Claes L, Lewi L, et al. Intrauterine transfusion for fetal anemia due to red blood cell alloimmunization: 14 years experience in Leuven. Facts Views Vis Obgyn. 2015;7(2):129–136.
  41. 41. Dodd JM, Andersen C, Dickinson JE, et al. Fetal middle cerebral artery Doppler to time intrauterine transfusion in red-cell alloimmunization: a randomized trial. Ultrasound Obstet Gynecol. 2018;51(3):306–312. doi:10.1002/uog.18807
  42. 42. Bondagji NS. Rhesus alloimmunization in pregnancy. A tertiary care center experience in the Western region of Saudi Arabia [published correction appears in Saudi Med J. 2012 Jun;33(6):688]. Saudi Med J. 2011;32(10):1039–1045.
  43. 43. Nardozza LM, Camano L, Moron AF, et al. Perinatal mortality in Rh alloimmunized patients. Eur J Obstet Gynecol Reprod Biol. 2007;132(2):159–162. doi:10.1016/j.ejogrb.2006.06.007
  44. 44. Delaney M, Matthews DC. Hemolytic disease of the fetus and newborn: managing the mother, fetus, and newborn. Hematology Am Soc Hematol Educ Program. 2015;2015:146–151. doi:10.1182/asheducation-2015.1.146
  45. 45. American Academy of Pediatrics Subcommittee on Hyperbilirubinemia. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation [published correction appears in Pediatrics. 2004 Oct;114(4):1138]. Pediatrics. 2004;114(1):297–316. doi:10.1542/peds.114.1.297
  46. 46. Rath ME, Smits-Wintjens VE, Walther FJ, Lopriore E. Hematological morbidity and management in neonates with hemolytic disease due to red cell alloimmunization. Early Hum Dev. 2011;87(9):583–588. doi:10.1016/j.earlhumdev.2011.07.010
  47. 47. Rübo J, Albrecht K, Lasch P, et al. High-dose intravenous immune globulin therapy for hyperbilirubinemia caused by Rh hemolytic disease. J Pediatr. 1992;121(1):93–97. doi:10.1016/s0022-3476(05)82551-x
  48. 48. Cortey A, Elzaabi M, Waegemans T, Roch B, Aujard Y. Efficacité et tolérance des immunoglobulines polyvalentes dans l'hyperbilirubinémie néonatale par incompatibilité ABO. Méta-analyse [Efficacy and safety of intravenous immunoglobulins in the management of neonatal hyperbilirubinemia due to ABO incompatibility: a meta-analysis]. Arch Pediatr. 2014;21(9):976–983. doi:10.1016/j.arcped.2014.02.005
  49. 49. Rath ME, Smits-Wintjens VE, Oepkes D, Walther FJ, Lopriore E. Iron status in infants with alloimmune haemolytic disease in the first three months of life. Vox Sang. 2013;105(4):328–333. doi:10.1111/vox.12061
  50. 50. Smits-Wintjens VE, Walther FJ, Lopriore E. Rhesus haemolytic disease of the newborn: Postnatal management, associated morbidity and long-term outcome. Semin Fetal Neonatal Med. 2008;13(4):265–271. doi:10.1016/j.siny.2008.02.005
  51. 51. Yilmaz S, Duman N, Ozer E, et al. A case of rhesus hemolytic disease with hemophagocytosis and severe iron overload due to multiple transfusions. J Pediatr Hematol Oncol. 2006;28(5):290–292. doi:10.1097/01.mph.0000212906.07018.93
  52. 52. Sreenan C, Idikio HA, Osiovich H. Successful chelation therapy in a case of neonatal iron overload following intravascular intrauterine transfusion. J Perinatol. 2000;20(8 Pt 1):509–512. doi:10.1038/
  53. 53. Khdair-Ahmad F, Aladily T, Khdair-Ahmad O, Badran EF. Chelation therapy for secondary neonatal iron over load: Lessons learned from rhesus hemolytic disease. Turk J Pediatr. 2018;60(3):335–339. doi:10.24953/turkjped.2018.03.018
  54. 54. Yalaz M, Bilgin BS, Köroğlu OA, et al. Desferrioxamine treatment of iron overload secondary to RH isoimmunization and intrauterine transfusion in a newborn infant. Eur J Pediatr. 2011;170(11):1457–1460. doi:10.1007/s00431-011-1521-7
  55. 55. Demircioğlu F, Çağlayan Sözmen Ş, Yılmaz Ş, et al. Severe iron overload and hyporegenerative anemia in a case with rhesus hemolytic disease: therapeutic approach to rare complications. Rhesus hemolitik hastalıklı bir vakada hiporejeneratif anemi ve aşırı demir yüklenmesi: Nadir gelişen komplikasyona terapötik yaklaşım. Turk J Haematol. 2010;27(3):204–208. doi:10.5152/tjh.2010.30
  56. 56. Ree IMC, Smits-Wintjens VEHJ, van der Bom JG, van Klink JMM, Oepkes D, Lopriore E. Neonatal management and outcome in alloimmune hemolytic disease. Expert Rev Hematol. 2017;10(7):607–616. doi:10.1080/17474086.2017.1331124
  57. 57. Berger HM, Lindeman JH, van Zoeren-Grobben D, Houdkamp E, Schrijver J, Kanhai HH. Iron overload, free radical damage, and rhesus haemolytic disease. Lancet. 1990;335(8695):933–936. doi:10.1016/0140-6736(90)90997-j
  58. 58. Smits-Wintjens VE, Rath ME, Lindenburg IT, et al. Cholestasis in neonates with red cell alloimmune hemolytic disease: incidence, risk factors and outcome. Neonatology. 2012;101(4):306–310. doi:10.1159/000335333
  59. 59. Bertini G, Dani C, Fonda C, Zorzi C, Rubaltelli FF. Bronze baby syndrome and the risk of kernicterus. Acta Paediatr. 2005;94(7):968–971. doi:10.1111/j.1651-2227.2005.tb02020.x
  60. 60. AlaaEldin A. Zeitoun, Hala F. Elhagrasy, Doaa M. Abdelsatar. Predictive value of umbilical cord blood bilirubin in neonatal hyperbilirubinemia. Egyptian Pediatric Association Gazette. 2013; 61 (1):23-30
  61. 61. Rahimi-Sharbaf F, Shariat M, Mirzaie F, Dehghan P, Dastgardy E, Adabi K. Prediction of fetal anemia by different thresholds of MCA-PSV and Delta-OD in first and second intrauterine transfusions. Arch Iran Med. 2012;15(3):162–165.
  62. 62. Scheier M, Hernandez-Andrade E, Fonseca EB, Nicolaides KH. Prediction of severe fetal anemia in red blood cell alloimmunization after previous intrauterine transfusions. Am J Obstet Gynecol. 2006;195(6):1550–1556. doi:10.1016/j.ajog.2006.03.060
  63. 63. Delle Chiaie L, Buck G, Grab D, Terinde R. Prediction of fetal anemia with Doppler measurement of the middle cerebral artery peak systolic velocity in pregnancies complicated by maternal blood group alloimmunization or parvovirus B19 infection. Ultrasound Obstet Gynecol. 2001;18(3):232–236. doi:10.1046/j.0960-7692.2001.00540.x
  64. 64. Mari G, Zimmermann R, Moise KJ Jr, Deter RL. Correlation between middle cerebral artery peak systolic velocity and fetal hemoglobin after 2 previous intrauterine transfusions. Am J Obstet Gynecol. 2005;193(3 Pt 2):1117–1120. doi:10.1016/j.ajog.2005.06.078
  65. 65. Carbonne B, Friszer S, Mace G, Castaigne-Meary V, Cynober E, Mailloux A, Cortey A. Value of MCA-PSV and of expected daily decrease in fetal hemoglobin for the timing of serial in utero transfusions in red-cell alloimmunization. Accessed 4/17/2020
  66. 66. Manoura A, Korakaki E, Hatzidaki E, et al. Use of recombinant erythropoietin for the management of severe hemolytic disease of the newborn of a K0 phenotype mother. Pediatr Hematol Oncol. 2007;24(1):69–73. doi:10.1080/08880010601001453
  67. 67. Lakatos L, Csáthy L, Nemes E. "Bloodless" treatment of a Jehovah's Witness infant with ABO hemolytic disease. J Perinatol. 1999;19(7):530–532. doi:10.1038/
  68. 68. Zuppa AA, Cardiello V, Alighieri G, et al. Anti-Rh(c), "little c," isoimmunization: the role of rHuEpo in preventing late anemia. J Pediatr Hematol Oncol. 2013;35(6):e269–e271. doi:10.1097/MPH.0b013e318271f5b0
  69. 69. Alaqeel AA. Hyporegenerative anemia and other complications of rhesus hemolytic disease: to treat or not to treat is the question. Pan Afr Med J. 2019;32:120. Published 2019 Mar 14. doi:10.11604/pamj.2019.32.120.17757
  70. 70. Dhodapkar KM, Blei F. Treatment of hemolytic disease of the newborn caused by anti-Kell antibody with recombinant erythropoietin. J Pediatr Hematol Oncol. 2001;23(1):69–70. doi:10.1097/00043426-200101000-00018
  71. 71. Moise KJ Jr, Argoti PS. Management and prevention of red cell alloimmunization in pregnancy: a systematic review. Obstet Gynecol. 2012;120(5):1132–1139. doi:10.1097/aog.0b013e31826d7dc1
  72. 72. Ghesquière L, Garabedian C, Coulon C, et al. Management of red blood cell alloimmunization in pregnancy. J Gynecol Obstet Hum Reprod. 2018;47(5):197–204. doi:10.1016/j.jogoh.2018.02.001
  73. 73. Simpson KR. Obstetrical "never events". MCN Am J Matern Child Nurs. 2006;31(2):136. doi:10.1097/00005721-200603000-00022
  74. 74. Parents of Infants and Children with Kernicterus, PICK
  75. 75. Bilirubin-encephalopathy. Icahn School of Medicine at Mount Sinai
  76. 76. Cholestasis in a neonate with ABO haemolytic disease of newborn following transfusion of ABO group-specific red cells compatible with neonatal serum: inspissated bile syndrome. Blood Transfus. 2014;12(4):621‐623. doi:10.2450/2014.0099-14
  77. 77. Macher S, Wagner T, Rosskopf K, et al. Severe case of fetal hemolytic disease caused by anti-C(w) requiring serial intrauterine transfusions complicated by pancytopenia and cholestasis. Transfusion. 2016;56(1):80‐83. doi:10.1111/trf.13367
  78. 78. Koenig JM, Christensen RD. Neutropenia and thrombocytopenia in infants with Rh hemolytic disease. J Pediatr. 1989;114(4 Pt 1):625‐631. doi:10.1016/s0022-3476(89)80709-7
  79. 79. Segal N, Leibovitz E, Juster-Reicher A, Even-Tov S, Mogilner B, Barak Y. Neutropenia complicating Rh-hydrops fetalis: the effect of treatment with recombinant human granulocyte colony-stimulating factor (rhG-CSF). Pediatr Hematol Oncol. 1998;15(2):193‐197. doi:10.3109/08880019809167235
  80. 80. Blanco E, Johnston DL. Neutropenia in infants with hemolytic disease of the newborn. Pediatr Blood Cancer. 2012;58(6):950‐952. doi:10.1002/pbc.23233
  81. 81. van den Akker ES, de Haan TR, Lopriore E, Brand A, Kanhai HH, Oepkes D. Severe fetal thrombocytopenia in Rhesus D alloimmunized pregnancies. Am J Obstet Gynecol. 2008;199(4):387.e1‐387.e3874. doi:10.1016/j.ajog.2008.07.001
  82. 82. Rath ME, Smits-Wintjens VE, Oepkes D, et al. Thrombocytopenia at birth in neonates with red cell alloimmune haemolytic disease. Vox Sang. 2012;102(3):228‐233. doi:10.1111/j.1423-0410.2011.01539.x
  83. 83. Zwiers C, van Kamp I, Oepkes D, & Lopriore E. Intrauterine transfusion and non-invasive treatment options for hemolytic disease of the fetus and newborn – review on current management and outcome, Expert Review of Hematology. 10:4,337-344, DOI: 10.1080/17474086.2017.1305265
  84. 84. Springer, Shelly C. Kernicterus treatment and management. Medscape.
  85. 85. Thilo, Elizabeth. Hemolytic Disease of the Newborn. Cancer Therapy Advisor; Pediatrics.
  86. 86. Wong R, Bhutani V, Vreman H, Stevenson D. Pharmacology Review: Tin Mesoporphyrin for the Prevention of Severe Neonatal Hyperbilirubinemia. NeoReviews. February 2007, 8 (2) e77-e84; DOI:
  87. 87. Stevenson DK, Wong RJ. Metalloporphyrins in the management of neonatal hyperbilirubinemia. Semin Fetal Neonatal Med. 2010;15(3):164‐168. doi:10.1016/j.siny.2009.11.004
  88. 88. Schulz S, Wong RJ, Vreman HJ, Stevenson DK. Metalloporphyrins - an update. Front Pharmacol. 2012;3:68. Published 2012 Apr 26. doi:10.3389/fphar.2012.00068
  89. 89. Kappas A, Drummond GS, Munson DP, Marshall JR. Sn-Mesoporphyrin interdiction of severe hyperbilirubinemia in Jehovah's Witness newborns as an alternative to exchange transfusion. Pediatrics. 2001;108(6):1374‐1377. doi:10.1542/peds.108.6.1374
  90. 90. Lindenburg IT, Smits-Wintjens VE, van Klink JM, et al. Long-term neurodevelopmental outcome after intrauterine transfusion for hemolytic disease of the fetus/newborn: the LOTUS study. Am J Obstet Gynecol. 2012;206(2):141.e1‐141.e1418. doi:10.1016/j.ajog.2011.09.024
  91. 91. Doyle L W, Kelly E A, Rickards A L, Ford G W, Callanan C. Sensorineural outcome at 2 years for survivors of erythroblastosis treated with fetal intravascular transfusions. Obstet Gynecol. 1993; 81: 931-935.
  92. 92. Harper D C, Swingle H M, Weiner C P, Bonthius D J, Aylward G P, Widness J A. Long-term neurodevel-opmental outcome and brain volume after treatment for hydrops fetalis by in utero intravascular transfusion. Am J Obstet Gynecol. 2006; 195: 192-200.
  93. 93. Grab D, Paulus W E, Bommer A, Buck G, Terinde R. Treatment of fetal erythroblastosis by intravascular transfusions: outcome at 6 years. Obstet Gynecol. 1999; 93: 165-168.
  94. 94. Hudon L, Moise K J, Jr., Hegemier S E et al. Long-term neurodevelopmental outcome after intrauterine transfusion for the treatment of fetal hemolytic disease. Am J Obstet Gynecol. 1998; 179:
  95. 95. Davies NP, Buggins AG, Snijders RJ, Noble PN, Layton DM, Nicolaides KH. Fetal leucocyte count in rhesus disease. Arch Dis Child. 1992;67(4 Spec No):404‐406. doi:10.1136/adc.67.4_spec_no.404
  96. 96.Saade GR, Moise KJ, Belfort MA, Hesketh DE, Carpenter RJ. Fetal and neonatal hematologic parameters in red cell alloimmunization: predicting the need for late neonatal transfusions. Fetal Diagn Ther. 1993;8:161-4.
  97. 97. Yinon Y, Visser J, Kelly EN, et al. Early intrauterine transfusion in severe red blood cell alloimmunization. Ultrasound Obstet Gynecol. 2010;36(5):601-606. doi:10.1002/uog.7696
  98. 98. Lindenburg IT, Wolterbeek R, Oepkes D, Klumper FJ, Vandenbussche FP, van Kamp IL. Quality control for intravascular intrauterine transfusion using cumulative sum (CUSUM) analysis for the monitoring of individual performance. Fetal Diagn Ther. 2011;29(4):307-314. doi:10.1159/000322919

The Hope Connection - AHF's Quarterly Newsletter

* indicates required
Are you a patient or a provider? *
Would you like to receive our newsletter? *
I am interested in